Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
BMC Nephrol ; 24(1): 19, 2023 01 24.
Article in English | MEDLINE | ID: covidwho-2214549

ABSTRACT

INTRODUCTION: Immunosuppressive therapy is associated with an increased risk of severe courses of SARS-CoV-2 infection, with frequently delayed viral clearance. We report a case of an acute kidney transplant failure in persistent SARS-CoV-2 infection in a patient with absolute B-cell depletion after administration of rituximab for AB0-incompatible living donor kidney transplantation. CASE PRESENTATION: A 34-year-old unvaccinated patient is diagnosed with SARS-CoV-2 infection four months after kidney transplantation. With only mild symptoms and an estimated glomerular filtration rate (eGFR) of 44 ml/min/1.73 m2, therapy with molnupiravir was initially given. Within the next eight weeks, transplant biopsies were performed for acute graft failure. These showed acute T-cell rejection with severe acute tubular epithelial damage with only mild interstitial fibrosis and tubular atrophy (BANFF cat. 4 IB), and borderline rejection (BANFF cat. 3). A therapy with prednisolone and intravenous immunoglobulins was performed twice. With unchanged graft failure, the third biopsy also formally showed BANFF cat. 4 IB. However, fluorescence in situ hybridization detected SARS-CoV-2 viruses in large portions of the distal tubules. After nine weeks of persistent COVID-19 disease neither anti-SARS-CoV-2 IgG nor a SARS-CoV-2-specific cellular immune response could be detected, leading to the administration of sotrovimab and remdesivir. Among them, SARS-CoV-2 clearance, detection of IgG, and improvement of graft function were achieved. CONCLUSION: Lack of viral clearance can lead to complications of SARS-CoV-2 infection with atypical manifestations. In kidney transplant patients, before initiating therapy, the differential diagnoses of "rejection" and "virus infection" should be weighed against each other in an interdisciplinary team of nephrologists, infectious diseases specialists and pathologists.


Subject(s)
COVID-19 , Kidney Diseases , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Living Donors , In Situ Hybridization, Fluorescence , COVID-19/complications , SARS-CoV-2 , Graft Rejection , Kidney Diseases/etiology , Immunoglobulin G
4.
Pharmacogenet Genomics ; 31(8): 165-171, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1232235

ABSTRACT

OBJECTIVES: The RNA virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19). Cell entry is mediated by the human angiotensin-converting enzyme II (ACE2). ACE2 and its close homolog angiotensin-converting enzyme I (ACE) are currently discussed candidate genes, in which single-nucleotide polymorphisms (SNPs) could alter binding or entry of SARS-CoV-2 and enhance tissue damage in the lung or other organs. This could increase the susceptibility for SARS-CoV-2 infection and the severity of COVID-19. PATIENTS AND METHODS: We performed genotyping of SNPs in the genes ACE2 and ACE in 297 SARS-CoV-2-positive and 253 SARS-CoV-2-negative tested patients. We analyzed the association of the SNPs with susceptibility for SARS-CoV-2 infection and the severity of COVID-19. RESULTS: SARS-CoV-2-positive and SARS-CoV-2-negative patients did not differ regarding demographics and clinical characteristics. For ACE2 rs2285666, the GG genotype or G-allele was significantly associated with an almost two-fold increased SARS-CoV-2 infection risk and a three-fold increased risk to develop serious disease or COVID-19 fatality. In contrast, the ACE polymorphism was not related to infection risk or severity of disease. In a multivariable analysis, the ACE2 rs2285666 G-allele remained as an independent risk factor for serious disease besides the known risk factors male gender and cardiovascular disease. CONCLUSIONS: In summary, our report appears to be the first showing that a common ACE2 polymorphism impacts the risk for SARS-CoV-2 infection and the course of COVID-19 independently from previously described risk factors.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genetic Predisposition to Disease , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/pathology , Female , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Severity of Illness Index , Young Adult
5.
Front Genet ; 12: 667231, 2021.
Article in English | MEDLINE | ID: covidwho-1221943

ABSTRACT

The transmembrane serine protease 2 (TMPRSS2) is the major host protease that enables entry of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) into host cells by spike (S) protein priming. Single nucleotide polymorphisms (SNPs) in the gene TMPRSS2 have been associated with susceptibility to and severity of H1N1 or H1N9 influenza A virus infections. Functional variants may influence SARS-CoV-2 infection risk and severity of Coronavirus disease 2019 (COVID-19) as well. Therefore, we analyzed the role of SNPs in the gene TMPRSS2 in a German case-control study. We performed genotyping of the SNPs rs2070788, rs383510, and rs12329760 in the gene TMPRSS2 in 239 SARS-CoV-2-positive and 253 SARS-CoV-2-negative patients. We analyzed the association of the SNPs with susceptibility to SARS-CoV-2 infection and severity of COVID-19. SARS-CoV-2-positive and SARS-CoV-2-negative patients did not differ regarding their demographics. The CC genotype of TMPRSS2 rs383510 was associated with a 1.73-fold increased SARS-CoV-2 infection risk, but was not correlated to severity of COVID-19. Neither TMPRSS2 rs2070788 nor rs12329760 polymorphisms were related to SARS-CoV-2 infection risk or severity of COVID-19. In a multivariable analysis (MVA), the rs383510 CC genotype remained an independent predictor for a 2-fold increased SARS-CoV-2 infection risk. In summary, our report appears to be the first showing that the intron variant rs383510 in the gene TMPRSS2 is associated with an increased risk to SARS-CoV-2 infection in a German cohort.

7.
Int J Environ Res Public Health ; 18(9)2021 04 25.
Article in English | MEDLINE | ID: covidwho-1202185

ABSTRACT

SARS-CoV-2 is a worldwide challenge for the medical sector. Healthcare workers (HCW) are a cohort vulnerable to SARS-CoV-2 infection due to frequent and close contact with COVID-19 patients. However, they are also well trained and equipped with protective gear. The SARS-CoV-2 IgG antibody status was assessed at three different time points in 450 HCW of the University Hospital Essen in Germany. HCW were stratified according to contact frequencies with COVID-19 patients in (I) a high-risk group with daily contacts with known COVID-19 patients (n = 338), (II) an intermediate-risk group with daily contacts with non-COVID-19 patients (n = 78), and (III) a low-risk group without patient contacts (n = 34). The overall seroprevalence increased from 2.2% in March-May to 4.0% in June-July to 5.1% in October-December. The SARS-CoV-2 IgG detection rate was not significantly different between the high-risk group (1.8%; 3.8%; 5.5%), the intermediate-risk group (5.1%; 6.3%; 6.1%), and the low-risk group (0%, 0%, 0%). The overall SARS-CoV-2 seroprevalence remained low in HCW in western Germany one year after the outbreak of COVID-19 in Germany, and hygiene standards seemed to be effective in preventing patient-to-staff virus transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Follow-Up Studies , Germany/epidemiology , Health Personnel , Humans , Seroepidemiologic Studies
8.
Viruses ; 13(5)2021 04 25.
Article in English | MEDLINE | ID: covidwho-1201724

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has a major impact on transplant recipients, with mortality rates up to 20%. Therefore, the effect of established messenger RNA (mRNA)-based SARS-CoV-2 vaccines have to be evaluated for solid organ transplant patients (SOT) since they are known to have poor responses after vaccination. We investigated the SARS-CoV-2 immune response via SARS-CoV-2 IgG detection in 23 renal transplant recipients after two doses of the mRNA-based SARS-CoV-2 vaccine BNT162b2 following the standard protocol. The antibody response was evaluated once with an anti-SARS-CoV-2 IgG CLIA 15.8 +/- 3.0 days after the second dose. As a control, SARS-CoV-2 IgG was determined in 23 healthcare workers (HCW) and compared to the patient cohort. Only 5 of 23 (22%) renal transplant recipients were tested positive for SARS-CoV-2 IgG antibodies after the second dose of vaccine. In contrast, all 23 (100%) HCWs were tested positive for antibodies after the second dose. Thus, the humoral response of renal transplant recipients after two doses of the mRNA-based vaccine BNT162b2 (Pfizer-BioNTech, Kronach, Germany) is impaired and significantly lower compared to healthy controls (22% vs. 100%; p = 0.0001). Individual vaccination strategies might be beneficial in these vulnerable patients.


Subject(s)
COVID-19 Vaccines/immunology , Kidney Transplantation , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/immunology , Antibody Formation , BNT162 Vaccine , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Female , Health Personnel , Humans , Immunoglobulin G/immunology , Male , Middle Aged , RNA, Messenger/immunology , Transplant Recipients , Transplantation Immunology/immunology , Vaccination
9.
Cytokine ; 142: 155492, 2021 06.
Article in English | MEDLINE | ID: covidwho-1118377

ABSTRACT

BACKGROUND AND AIMS: The interferon-induced transmembrane protein 3 (IFITM3) plays an important role in the adaptive and innate immune response by inhibiting viral membrane hemifusion between the host and viral cell cytoplasm. Single nucleotide polymorphisms (SNPs) in the gene IFITM3 have been associated with susceptibility and severity of influenza or other viral infections. We aimed to analyze the role of SNPs in the gene IFITM3 in SARS-CoV-2 infection. METHODS: We performed genotyping of the SNPs rs12252 and rs34481144 in the gene IFITM3 in 239 SARS-CoV-2-positive and 253 SARS-CoV-2-negative patients. We analyzed the association of the SNPs with susceptibility to SARS-CoV-2 infection and severity of COVID-19. RESULTS: SARS-CoV-2-positive and SARS-CoV-2-negative patients did not differ regarding demographics. Neither IFITM3 rs12252 nor rs34481144 polymorphisms were related to SARS-CoV-2 infection risk or severity of COVID-19. Interestingly, we observed the putative deleterious rs12252 CC genotype only in SARS-CoV-2-positive patients (N = 2). Also, we found a non-significant higher frequency of rs34481144 A-allele carriers in the patients with 'serious' COVID-19. CONCLUSIONS: In summary, we could not confirm the recently reported influence of polymorphisms in the gene IFITM3 on SARS-CoV-2 infection risk or severity of COVID-19 in a German cohort. Additional studies are needed to clarify the influence of the rs12252 CC genotype on SARS-CoV-2 infection risk and the rs34481144 A-allele on course of COVID-19.


Subject(s)
COVID-19/genetics , Genetic Predisposition to Disease , Membrane Proteins/genetics , Polymorphism, Single Nucleotide , RNA-Binding Proteins/genetics , SARS-CoV-2 , Severity of Illness Index , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged
10.
Thromb J ; 19(1): 10, 2021 Feb 11.
Article in English | MEDLINE | ID: covidwho-1080839

ABSTRACT

BACKGROUND: Severe thromboembolic events are one of the major complications associated with COVID-19 infection, especially among critically ill patients. We analysed ROTEM measurements in COVID-19 patients with a severe disease course and in patients with severe sepsis. METHODS: In this study, data obtained by extended analysis of haemostasis with standard laboratory tests and thromboelastometry of 20 patients with severe course of COVID-19 were retrospectively analysed and compared with similar data from 20 patients with severe sepsis but no COVID-19. RESULTS: The thromboelastometry values obtained from 20 sepsis patients contained a maximum clot firmness above the normal range but among COVID-19 patients, hypercoagulability was much more pronounced, with significantly higher maximum clot firmness (FIBTEM: 38.4 ± 10.1 mm vs. 29.6 ± 10.8 mm; P  = 0.012; EXTEM: 70.4 ± 10.4 mm vs. 60.6 ± 14.8 mm; P  = 0.022). Additionally, fibrinogen levels were significantly higher among COVID-19 patients (757 ± 135 mg/dl vs. 498 ± 132 mg/dl, P < 0.0001). Furthermore, thromboelastometry showed fibrinolysis shutdown among COVID-19 patients with significantly lower maximum of lysis than among sepsis patients (EXTEM: 0.6 ± 1.2 % vs. 3.3 ± 3.7 %; P  = 0.013). Seven of 20 COVID-19 patients experienced thromboembolic events, whereas no patient in the sepsis group experienced such events. CONCLUSIONS: ROTEM analysis showed significantly different pathological findings characterized by hypercoagulability and fibrinolysis shutdown among COVID-19 patients with a severe disease course compared to patients with severe sepsis. These abnormalities seem to be associated with thromboembolic events.

11.
Cell Death Differ ; 28(5): 1610-1626, 2021 05.
Article in English | MEDLINE | ID: covidwho-957566

ABSTRACT

The receptor-interacting serine/threonine protein kinase 1 (RIPK1) is a key mediator of regulated cell death and inflammation. Recent studies suggest that RIPK1 inhibition would fundamentally improve the therapy of RIPK1-dependent organ damage in stroke, myocardial infarction, kidney failure, and systemic inflammatory response syndrome. Additionally, it could ameliorate or prevent multi-organ failure induced by cytokine release in the context of hyperinflammation, as seen in COVID-19 patients. Therefore, we searched for a RIPK1 inhibitor and present the aromatic antiepileptic and FDA-approved drug primidone (Liskantin®) as a potent inhibitor of RIPK1 activation in vitro and in a murine model of TNFα-induced shock, which mimics the hyperinflammatory state of cytokine release syndrome. Furthermore, we detected for the first time RIPK1 activation in the respiratory tract epithelium of hospitalized patients who tested positive for SARS-CoV-2 infection. Our data provide a strong rationale for evaluating the drug primidone in conditions of hyperinflammation in humans.


Subject(s)
COVID-19/enzymology , Primidone/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , SARS-CoV-2/metabolism , Animals , COVID-19/pathology , Cell Death/drug effects , HEK293 Cells , HT29 Cells , Humans , Inflammation/drug therapy , Inflammation/enzymology , Inflammation/pathology , Jurkat Cells , Mice , NIH 3T3 Cells , U937 Cells , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL